
Bringing Workflows to Life Using a Graph Database With BEE
Steven Anaya

New Mexico Tech
steven.anaya@student.nmt.edu

Mentors: Tim Randles & Patricia Grubel About Neo4j
• Single database per instance
• Uses Cypher Query Language exclusively
• Visualize and manipulate database:

• In a browser
• In a Cypher shell

• Python 3 driver for running query transactions

Why a Graph Database?
• Natural mapping from workflows to graphs
• Storage of workflow data/metadata in one database

Abstract
Scientific workflows can be complex and require much
planning, setup, and maintenance to execute on HPC
machines. BEE seeks to simplify this process by
modeling workflows using a workflow language
specification, storing and visualizing the workflows
using a graph database, and executing them using the
BEE workflow engine. To easily map workflows into the
graph database, I implemented a simple, high-level
programming interface for use with BEE development.
In addition to this interface, I have also worked to set
up our development environment—including code
auditing, dependency management, unit testing, and
package deployment tools—to improve the efficiency
of our development and the quality of our software.

Why CWL?
• Unified language for workflow modeling
• Models metadata (requirements, resources, etc.)
• Community-driven project, abundance of support
• Follows OpenStand principles of open development

Future Work
• Export/import workflows to other databases
• Back-up/cache/save workflows as CWL files
• Modify workflow loaded into database
• Build workflows entirely within Neo4j
• Implement other graph databases

Development Environment Setup
• Entirely Python 3 for portability
• Pyenv to manage Python versions
• Poetry to manage project dependencies
• Pylama to enforce consistent style, good practices
• Unittest framework to implement unit testing
• To Done: GitHub + Travis CI to implement CI/CD

Our Graph DB Abstraction Layer
• Abstracts away the graph database implementation
• Easily load workflows into the graph database

• Store metadata as node/relationship properties
• Visualize the workflow in a browser

• Design allows alternate Graph DB implementations

UML Diagram describing the loading of a workflow into a Neo4j database

Our CWL Parser
• Convert CWL into Python objects
• Load these into the graph database
• BEE extends CWL to add unsupported features

• Use Python expressions instead of JavaScript
• Use HPC containers instead of Docker containers

BLAST 
DNA

SPLITTER

BLAST
WORKER

0

BLAST
WORKER

1

BLAST
OUTPUT
COLLECT

BLAST
ERROR

COLLECT

Workflow
(Abstract) CWL File Neo4j Graph

A simple BLAST DNA sequencing workflow is described in CWL and loaded into Neo4j

BEE Overview
• BEE: Build and Execution Environment
• Workflow management/visualization/analysis

• Uses a graph database (Neo4j)
• Executes Common Workflow Language workflows:

• Locally
• On a cluster (in-development)
• In the cloud (in-development)

• Supports Charliecloud containers natively

LA-UR-19-27098


